Reliability and Redundancy for the
Central Services of CDF SAM

Stefan Stonjek

23-Mar-2005

1 Problem

CDF already has many SAM stations in-
stalled around the world. This includes
SAM stations in Europe, North-America
and Asia. To function properly all these
SAM station depend on the central SAM
services. The main ones are:

e CORBA naming service
e db-server(s)

e central database

As long as these services are up and reach-
able SAM stations can functions. A faili-
ure in each of the services effects the whole
SAM system, but to a different degree.

e A failure in the central database
would only effect the db-server. Ver-
sion 5 db-servers would have needed
a manual restart. But version 6 db-
server are able to reconnect by them-
selfs. SAM stations would not be ef-
fected by a database failure because
they do not talk to the database di-
rectly. They would just see very long
delays in the db-server answers.

e Tests have shown that current ver-
sions of the SAM station are able to
deal with a db-server failure. A SAM
station would not crach but wait till
the db-server is up again.

Current versions of the SAM client
would respond with a reasonable er-
ror message to a db-server problem
and would point the user in the right

direction.

A db-server problem would prevent
stations for starting as would a prob-
lem between the db-server and the
central database or a problem in the
central database..

e A failure in the CORBA name-
ing service (crash or network prob-
lem) would crash all SAM stations
which were up and connected to
that CORBA naming service at that
point in time.

Therefore the CORBA nameing service is
the most critical single service in the cur-
rent situation.

2 Approaches

With some effort it would be possible to
alter the station and client code to cope
with the nonexistance of any nameing ser-
vice. But this seems to be non-trivial. In
addition any naming service and/or db-
server downtime would still stop block ev-
ery SAM station.

A Dbetter approach would include redun-
dant nameing services, db-servers and
database machines. Since SAM has to
write to the central database their is no
easy way to achieve redundancy for the
database itself.

But it is possible to construct a redun-
dant system of nameing service and db-
server, which would prevent SAM station
from craching, even during database out-
ages’

1CDF had to deal with many database outages in recent days, therefore we feel that this is an issue.

3 Setup

The general idea for redudant CORBA
nameing services and db-servers consinst
of several identical machines which each
have a CORBA nameing service and a
SAM db-server running.

On each of the machines the db-server
would register with the local CORBA
nameing service. The name used for this
registration would be the same on all ma-
chines.

Each SAM station (and SAM client) would
have to know about all nameing services.
Whenever the station want to talk to a db-
server it would contact the nameing service
and ask for the db-server. In case a name-
ing service (or a db-server) is not reach-
able the station would fail-over to the next
CORBA nameing service in the list.

To allow fail-over in case of network prob-
lems it might be usefull to have several
machines around the world: e.g. two at
Fermilab, one in Europe and one in Asia.

4 Test Results

The SAM station is already able to
deal with four CORBA nameing services.
Theirfore we already configured and tested
the system descibed above?. We were even
able to see a station fail back to another
nameing service.

But it was not possible to start a station
as long as one of the nameing services the
station knows about are unreachable.

In addtion this test showed that the db-
server should be close to the database ma-
chine itself. The connection between the
db-server and the database is more sensi-
tive to delays than the connection between
the db-server and a SAM station.

5 Possible Scenarios

There are several ways to allow remote
SAM stations to survive a problem at
FCC.

e One could change the station and
client code which would allow them
ride trough a nameing service prob-
lem.

e One could set up redundant nameing
services as described above.

e One could force every station admin
to restart the station whenever FCC
has a power problem

e One could redesign the station so
that all relevant information are lo-
cal

Given the fact that CDF already has to
server class machines (cdfsam01 and cdf-
sam02) which could easily configured to
act as redundant nameing services and
the fact that a SAM station can alreday
deal with four nameing services, this setup
seems to be the most effective and straigt
forward one.

6 Conclusion

It is possible to design a CORBA sys-
tem without a single-point-of-failure. The
database remains the only single-point-of-
failure?.

The SAM station code has to be checked
and the startup bug fixed.

The SAM client code needs the ability to
fail-over to redundant nameing services.

Remote CDF SAM stations really need the
ability to survive FCC problems. For their
good we should implement this feature.

2We used two nameing services and db-servers at Fermilab: cdfsam01 and cdfsam02
3Qracle 10g might offer a setup which would avoid a single-point-of-failure.

A Source Code

The following python source code demonstrates how a program could iterrate over all proviced
nameing services.

#1/usr/bin/env python

python program which list all IOR contents
Several IORs and IORs with more than one object

Stefan Stonjek
11-Feb-2004

R R

Standard/built-in modules.
import mew, sys, os, re

Fnorb modules.
from Fnorb.orb import CORBA, IIOP, IOP

Naming Service modules.
from Fnorb.cos.naming import CosNaming

class NameServiceObj:

def __init__(self,s_ior):
self .maxRequestedNames = 100

initialise the ORB.
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

get the nameing server context
self.nsContext = orb.string_to_object(s_ior)

get the entire naming service tree.
self.getNamesInContext (self.nsContext, "")

def resolveName(self, name, nsContext = None):
returnObj = None
if nsContext:
returnObj = nsContext.resolve(name)
else:
returnObj = self.nsContext.resolve(name)
return returnObj

def getNamesInContext(self, nsContext, contextName, parentContextName = "/"):
(bindingList, bindingIterator) = nsContext.list(self.maxRequestedNames)
if (bindingIterator != None):
while (1):
(result, newBindingList) = bindingIterator.next_n(self.maxRequestedNames)
if result:
bindingList = bindinglist + newBindingList
else:
break

for b in bindingList:
#for method in dir(b.__class_
print method
if (b.binding_type == CosNaming.ncontext):
newNsContext = self.resolveName(b.binding name, nsContext)
newContextName = contextName + "/" + b.binding_name[0].id
newContext = self.getNamesInContext(newNsContext, newContextName, newContextName)
else:
full_context = parentContextName + ’/’ + b.binding_name[0].id
print ’%-60s 20s’ % (full_context , b.binding_name[0].kind)

def main(argv):
env_vars= [’SAM_NAMING_SERVICE_IOR’,’SAM_NAMING_SERVICE_IOR_1’,’SAM_NAMING_SERVICE_IOR_2’,’SAM_NAMING_SERVICE_IOR_3’]

for env_var in env_vars:
sam_naming_service_ior = os.getenv(env_var)
if sam_naming_service_ior == Nome :
return
if re.compile("IOR:").search(sam_naming_service_ior, 0):

ior = new.instance(IOP.IOR, {})
ior._fnorb_from_string(sam_naming_service_ior)

for p in ior.profiles:

host = p.profile_data.host
port = p.profile_data.port

key = p.profile_data.object_key

version = II0P.Version(chr(1), chr(0))

type = ior.type_id

profile_body = IIOP.ProfileBody(version, host, port, key)

profile = I0P.TaggedProfile(IOP.TAG_INTERNET_IOP, profile_body)
p_ior = IOP.IOR(type, [profilel)

s_ior p_ior._fnorb_to_string()
print "+++ " + host + " " + str(port) + " " + key + " " + type + " ++tttttt!
ns = NameServiceObj(s_ior)

return

if __name__ == ’__main__’:
sys.exit(main(sys.argv))

	1 Problem
	2 Approaches
	3 Setup
	4 Test Results
	5 Possible Scenarios
	6 Conclusion
	A Source Code

